非線形回帰分析 - 01

線形回帰の場合,残差の平方和がδの二乗に従うか?

傾きを定数とした場合の最小二乗

線形の式,

まずは,\(\Large \displaystyle y_i =a_0 + a_1 x_i \),からスタートします.

傾きを固定したので,傾きの固定した値によって,切片,a0,がどのような最適解になるかを調べます.

\(\Large \displaystyle \sum_{i=1}^n \left( y_i - a_0 - a_1 x_i \right)^2 \)

が最小になればいいので,

\(\Large \displaystyle \frac{ \partial}{ \partial a_0} \sum_{i=1}^n \left( y_i - a_0 - a_1 x_i \right)^2 =0 \)

となる,a0,を求めます.

\(\Large \displaystyle = \frac{ \partial}{ \partial a_0} \left[ \sum_{i=1}^n y_i^2
+\sum_{i=1}^n a_0^2 +\sum_{i=1}^n ( b x_i)^2
- 2 \sum_{i=1}^n y_i a_0 -2 \sum_{i=1}^n a_1 x_i y_i +2 \sum_{i=1}^n a_0 a_1 xi
\right] \)

a0,が含まれていない項は微分で0となるので,

\(\Large \displaystyle = \frac{ \partial}{ \partial a_0} \left[
n a_0^2 - 2 a_0 \sum_{i=1}^n y_i +2 a_0 a_1\sum_{i=1}^n xi
\right] \)

\(\Large \displaystyle = 2 n a_0 - 2 \sum_{i=1}^n y_i +2 a_1\sum_{i=1}^n xi =0 \)

\(\Large \displaystyle a_{0 a_1} = \frac{1}{n} \left( \sum_{i=1}^n y_i - a_1\sum_{i=1}^n xi \right)
= \bar{y} - a_1 \bar{x} \)

となります.

ここで,a1,を変化させたときの残差は,

\(\Large \displaystyle \sum_{i=1}^n \left( y_i - a_{0 a_1} - a_1 x_i \right)^2 \)

\(\Large \displaystyle = \sum_{i=1}^n \left\{ y_i - (\bar{y} - a_1 \bar{x}) - a_1 x_i \right\}^2 \)

\(\Large \displaystyle = \sum_{i=1}^n \left\{ (y_i - \bar{y}) - a_1 (x_i - \bar{x}) \right\}^2 \)

ここでa1,を推定値からの偏差,δ,で表すと,

\(\Large \displaystyle a_1 = \hat{a_1} + \delta \)

となるので,

\(\Large \displaystyle = \sum_{i=1}^n \left\{ (y_i - \bar{y}) - (\hat{a_1} + \delta) (x_i - \bar{x}) \right\}^2 \)

\(\Large \displaystyle = \sum_{i=1}^n \left\{ (x_i - \bar{x}) \delta
+ (y_i - \bar{y}) - \hat{a_1} (x_i - \bar{x}) \right\}^2 \)

と整理できます.

次に,δ2,δ1,δ0,と分けて考えていきましょう.

 

・δ2

これは簡単に,

\(\Large \displaystyle \sum_{i=1}^n (x_i - \bar{x})^2 \)

となります.

 

・δ1

\(\Large \displaystyle 2 \sum_{i=1}^n \left[ (x_i - \bar{x}) \left\{ (y_i - \bar{y}) - \hat{a_1} (x_i - \bar{x}) \right\} \right] \)

\(\Large \displaystyle = 2 \sum_{i=1}^n \left[ (x_i - \bar{x}) (y_i - \bar{y}) - \hat{a_1} (x_i - \bar{x})^2 \right] \)

\(\Large \displaystyle = 2 \sum_{i=1}^n \left[ x_i y_i -x_i \bar{y} - \bar{x} y_i +\bar{x} \bar{y}
- \hat{a_1} x_i^2 + 2 \hat{a_1} x_i \bar{x} - \hat{a_1} \bar{x}^2 \right] \)

\(\Large \displaystyle = 2 n \left[ \overline{xy} -\bar{x} \bar{y} - \bar{x} \bar{y} +\bar{x} \bar{y}
- \hat{a_1} \bar{x^2} + 2 \hat{a_1} \bar{x}^2- \hat{a_1} \bar{x}^2 \right] \)

\(\Large \displaystyle = 2 n \left[ \overline{xy} -\bar{x} \bar{y}
- \hat{a_1} \bar{x^2} + \hat{a_1} \bar{x}^2 \right] \)

\(\Large \displaystyle = 2 n \left[ \overline{xy} -\bar{x} \bar{y}
- \hat{a_1} (\bar{x^2} - \bar{x}^2) \right] \)

となります.ここで,

\(\Large \displaystyle \bar{x^2} , \bar{x}^2 \)

の違いに注意です.ここで,

\(\Large \displaystyle \hat{a_1} = \frac{ \displaystyle \sum_{i=1}^{n} \left(x_i - \bar{x} \right) \left(y_i - \bar{y} \right)}{ \displaystyle \sum_{i=1}^{n} \left( x_i - \bar{x} \right)^2} \)

\(\Large \displaystyle = \frac{ \displaystyle \sum_{i=1}^{n} \left(x_i y_i -x_i \bar{y} - \bar{x} y_i +\bar{x} \bar{y}\right)}{ \displaystyle \sum_{i=1}^{n} \left( x_i^2 - 2 x_i \bar{x} +\bar{x}^2 \right)} \)

\(\Large \displaystyle = \frac{ n \left(\overline{xy} -\bar{x} \bar{y} - \bar{x} \bar{y} +\bar{x} \bar{y}\right)}
{ n \left( \bar{x^2} - 2 \bar{x}^2 +\bar{x}^2 \right)} \)

\(\Large \displaystyle = \frac{ \overline{xy} -\bar{x} \bar{y} }
{ \bar{x^2} - \bar{x}^2 } \)

ですので,先程の式に代入すると,

\(\Large \displaystyle = 2 n \left[ \overline{xy} -\bar{x} \bar{y}
- \hat{a_1} (\bar{x^2} - \bar{x}^2) \right] \)

\(\Large \displaystyle = 2 n \left[ \overline{xy} -\bar{x} \bar{y}
- \frac{ \overline{xy} -\bar{x} \bar{y} }
{ \bar{x^2} - \bar{x}^2 } (\bar{x^2} - \bar{x}^2) \right] \)

\(\Large \displaystyle = 2 n \left[ \overline{xy} -\bar{x} \bar{y}
- ( \overline{xy} -\bar{x} \bar{y}) \right] = 0 \)

となって,δ1,の項は0となります.

・δ0

\(\Large \displaystyle \sum_{i=1}^n \left[\left\{ (y_i - \bar{y}) - \hat{a_1} (x_i - \bar{x}) \right\}^2 \right] \)

\(\Large \displaystyle = \sum_{i=1}^n \left[ (y_i - \bar{y})^2 - 2 \hat{a_1} (x_i - \bar{x}) (y_i - \bar{y}) + \hat{a_1}^2 (x_i - \bar{x})^2 \right] \)

\(\Large \displaystyle = \sum_{i=1}^n [ y_i^2 - 2 \bar{y} y_i + \bar{y}^2 \)

\(\Large \displaystyle \hspace{40 pt} - 2 \hat{a_1} x_i y_i +2 \hat{a_1} x_i \bar{y} +2 \hat{a_1} \bar{x} y_i - 2 \hat{a_1} \bar{x} \bar{y}
\)

\(\Large \displaystyle \hspace{40 pt} + \hat{a_1}^2 x_i^2 - 2 \hat{a_1}^2 \bar{x} x_i + \hat{a_1}^2 \bar{x}^2] \)

\(\Large \displaystyle = n [ \bar{y^2} - 2 \bar{y}^2 + \bar{y}^2 \)

\(\Large \displaystyle \hspace{40 pt} - 2 \hat{a_1} \overline{x y} +2 \hat{a_1} \bar{x} \bar{y} +2 \hat{a_1} \bar{x} \bar{y} - 2 \hat{a_1} \bar{x} \bar{y}
\)

\(\Large \displaystyle \hspace{40 pt} + \hat{a_1}^2 \bar{x^2} - 2 \hat{a_1}^2 \bar{x}^2 + \hat{a_1}^2 \bar{x}^2] \)

となります.同じ項目を色分けすると,

\(\Large \displaystyle = n [ \bar{y^2} \color{red}{- 2 \bar{y}^2 + \bar{y}^2} \)

\(\Large \displaystyle \hspace{40 pt} - 2 \hat{a_1} \overline{x y} +\color{blue}{2 \hat{a_1} \bar{x} \bar{y} +2 \hat{a_1} \bar{x} \bar{y} - 2 \hat{a_1} \bar{x} \bar{y} }
\)

\(\Large \displaystyle \hspace{40 pt} + \hat{a_1}^2 \bar{x^2} \color{purple}{- 2 \hat{a_1}^2 \bar{x}^2 + \hat{a_1}^2 \bar{x}^2]} \)

となるので,整理すると,

\(\Large \displaystyle = n \left[ \bar{y^2} - \bar{y}^2 - 2 \hat{a_1} \overline{x y} +2 \hat{a_1} \bar{x} \bar{y} + \hat{a_1}^2 \bar{x^2} - \hat{a_1}^2 \bar{x}^2 \right] \)

\(\Large \displaystyle = n \left[ \bar{y^2} - \bar{y}^2 - 2 \hat{a_1} (\overline{x y} - \bar{x} \bar{y}) + \hat{a_1}^2 (\bar{x^2} - \bar{x}^2) \right] \)

ここから,\(\Large\displaystyle \hat{a_1} = \frac{ \overline{x y} - \bar{x} \bar{y} }
{ \displaystyle \overline{x^2}- \bar{x}^2} \),

\(\Large \displaystyle = n \left[ \bar{y^2} - \bar{y}^2
- 2 \frac{ \overline{x y} - \bar{x} \bar{y} } { \displaystyle \overline{x^2}- \bar{x}^2} (\overline{x y} - \bar{x} \bar{y})
+ \left( \frac{ \overline{x y} - \bar{x} \bar{y} } { \displaystyle \overline{x^2}- \bar{x}^2} \right)^2 (\bar{x^2} - \bar{x}^2) \right] \)

\(\Large \displaystyle = n \left[ \bar{y^2} - \bar{y}^2
- 2 \frac{ (\overline{x y} - \bar{x} \bar{y})^2 } { \displaystyle \overline{x^2}- \bar{x}^2}
+ \frac{ (\overline{x y} - \bar{x} \bar{y})^2 } { \displaystyle \overline{x^2}- \bar{x}^2} \right] \)

\(\Large \displaystyle = n \left[ \bar{y^2} - \bar{y}^2
- \frac{ (\overline{x y} - \bar{x} \bar{y})^2 } { \displaystyle \overline{x^2}- \bar{x}^2}
\right] \)

この結果は,すなわち,前ページ,の,

\(\Large \displaystyle Se = \sum_{i=1}^{n} \left( y_i -\hat{a_0} - \hat{a_1} x_i \right)^2 \)

と同じになるので,まとめると,a1,を変化させたときの残差は,

\(\Large \displaystyle \sum_{i=1}^n \left( y_i - a_{0b} - a_1 x_i \right)^2 = Se + \sum_{i=1}^n (x_i - \bar{x})^2 \delta^2 \)

となります.

ここで,これらのサイト,サイトサイトでお示ししたように,\(\Large \displaystyle \hat{a_1} \)の分散は,

\(\Large \displaystyle V \left[ \hat{a_1} \right] = \sigma^2 \sum_{i=1}^{n} \omega_i^2
= \frac{\sigma^2 }{\sum_{i=1}^{n} \left( x_i - \bar{x} \right)^2} \)

\(\Large \displaystyle \sigma^2 = \frac{E \left[ \sum_{i=1}^n \hat{u_i}^2 \right]}{n-2} = s^2 \)

\(\Large \displaystyle y_i = \hat{a_0} + \hat{a_1} x_i + \hat{u_i} \)

から,

\(\Large \displaystyle \hat{u_i} = y_i - \hat{a_0} - \hat{a_1} x_i \)

\(\Large \displaystyle \sigma^2 = \frac{E \left[ \sum_{i=1}^n \hat{u_i}^2 \right]}{n-2} =\frac{ \sum_{i=1}^n (y_i - \hat{a_0} - \hat{a_1} x_i)^2 }{n-2} \)

\(\Large \displaystyle V \left[ \hat{a_1} \right] = \frac{\sigma^2 }{\sum_{i=1}^{n} \left( x_i - \bar{x} \right)^2}
= \frac{\sum_{i=1}^n (y_i - \hat{a_0} - \hat{a_1} x_i)^2 }{ (n-2) \sum_{i=1}^{n} \left( x_i - \bar{x} \right)^2} \)

となります.ここでシフト量,δの二乗が,\(\Large \displaystyle V \left[ \hat{a_1} \right] \),の場合は,

\(\Large \displaystyle \sum_{i=1}^n \left( y_i - a_{0b} - a_1 x_i \right)^2 = Se + \sum_{i=1}^n (x_i - \bar{x})^2 \delta^2 \)

\(\Large \displaystyle = Se + \sum_{i=1}^n (x_i - \bar{x})^2 \frac{\sum_{i=1}^n (y_i - \hat{a_0} - \hat{a_1} x_i)^2 }{ (n-2) \sum_{i=1}^{n} \left( x_i - \bar{x} \right)^2} \)

\(\Large \displaystyle = Se + \frac{\sum_{i=1}^n (y_i - \hat{a_0} - \hat{a_1} x_i)^2 }{ n-2} \)

となり,第二項が,ここ,で説明した,

\(\Large \displaystyle Ve = \frac{1}{n-2} \sum_{i=1}^{n} \left(y_i -\hat{a_0} - \hat{a_1} x_i \right)^2 = \frac{Se}{n-2} \)

と等しくなり,結果として,

\(\Large \displaystyle S_{SE} = Se + Ve \)

が成り立つことになります.

 

l t r